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a b s t r a c t

While carrying out optimization studies on kinetic scheme based models of polymerization reactions,
there are kinetic parameters that need to be tuned with process data during model building exercise
and henceforth assumed constant during the entire course of optimization studies. As these parameters
are subjected to experimental and regression errors, some levels of uncertainty are embedded in them.
Hence, handling them as constant parameters and thereby neglecting the uncertainty associated with
them during the entire course of optimization is not realistic. These problems are handled formally in the
paradigm of optimization under uncertainty where uncertainty propagation of these parameters through
model equations is reflected in terms of system constraints and objectives that facilitate a designer to
unveil the tradeoff between solution optimality and robustness. Chance constrained fuzzy simulation
based approach is one such methodology that merges the facets of chance constrained programming and
fuzzy logic and is adopted here to carry out an analysis in determining optimal performance of a semi-
batch epoxy polymerization reactor under uncertainty in kinetic parameters used for model building.
hance constrained programming
The aim of this study is to find out the tradeoff among optimal growth of the desired species, solution
robustness and productivity achieved through optimal discrete addition rates of different ingredients,
e.g. bisphenol-A, epichlorohydrin and sodium hydroxide while maintaining the constraints on the control
variables that are expressed in terms of bounds on Mn, PDI and other constraints reflecting the exper-
imental conditions realistically. The deterministic multiobjective optimization model of Majumdar et
al. [11] forms the basis of this work on which various effects of uncertain parameters are shown and

ion us
analyzed in a Pareto fash

. Introduction

Epoxies, the thermosetting resins that contain one or more reac-
ive epoxide groups in the uncured form, have a wide range of
pplications. The chemistry of epoxies not only allows curing pro-
ess to produce polymers with a very broad range of properties
uch as adhesion, chemical and heat resistance, good mechani-
al and electrical insulating properties but also helps imparting
ew properties into epoxies through different ways, e.g. silver-
lled epoxies can show good electrical conductivity as opposed
o their inherent insulating properties [1]. Among many, few
mportant applications of epoxy are in coatings, general purpose

dhesives, fiber-reinforced plastic materials, industrial tooling.
he non-hazardous epoxy coatings that can provide a tough, UV
esistant, protective coating with excellent hardness and abrasion
esistance are developed for heavy duty service on metal substrates
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ing real coded fuzzy chance constrained NSGA II.
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and have edge over heat-cured powder coatings in terms of less
energy consumption. The high performance epoxy adhesives that
have advantage in heat and chemical resistance over other common
adhesives are used in the construction of aircraft, automobiles, and
other applications where high strength bonds are required. Indus-
trial tooling applications like molds, laminates, castings, fixtures,
etc., are produced using epoxies as a replacement for metal or sim-
ilar other traditional materials, to improve the efficiency, lower the
overall cost or shorten the lead-time for many industrial processes.
Epoxy is used as a structural matrix material in aerospace industry
which is then reinforced by fiber. Other applications range in elec-
trical systems, composites, art, aerospace, wind energy, consumer
and marine applications, etc. [1]. It is, therefore, not surprising that
the field of epoxy polymerization has drawn a significant attention
of the polymer industry in the past few decades.
Epoxies are most popularly produced by Taffy process [2] where
the monomer, bisphenol-A (AA0) is reacted with excess epichloro-
hydrin (EP) in the presence of sodium hydroxide (NaOH) to form
polymer that has a glycidyl ether end groups (building block) at
both the ends. Advancement process [3] is the other route where

dx.doi.org/10.1016/j.cej.2010.05.004
http://www.sciencedirect.com/science/journal/13858947
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Nomenclature

AA0 bisphenol-A (monomer)
B sodium phenoxide end group
EP epichlorohydrin
f objective function in optimization problem
gi ith constraint in optimization problem
HSS Hammersley sequence sampling
ki reaction rate constant (i = 1, 2, 3,4, 5)
liEEn ith moment of EE species
Mn number average molecular weight
Mw weight average molecular weight
NaOH sodium hydroxide
N sampling size in fuzzy simulation
Nmax maximum number of generations in NSGA II
Npop population size in NSGA II
pc crossover probability in NSGA II
pm mutation probability in NSGA II
Pr probability measure
Pos probability measure
PDI polydispersity index (Mw/Mn)
PO Pareto optimal
ri fuzzy numbers
si fuzzy sets
ui ingredient addition amounts for different ingredi-

ents at different time points (i = 1, 2, . . ., 21)
Ui(t) ingredient profiles comprising seven ingredient

addition amounts (ui) at seven equidistant (tsim/7)
time points (i = 1, 2, 3 for NaOH, EP and AA0, respec-
tively); (U1(t) = [u1, u2, . . ., u7]T, U2(t) = [u8, u9, . . .,
u14]T, U3(t) = [u15, u16, . . ., u21]T)

x decision variable set
�i ith moment (here i = 0, 1, 2)
�1 objective function 1 which is ratio of concentration

of species EE0 and sum of the concentration of all
other nine species

�2 objective function 2 which is the ratio of first and
zero order moments for species EE0

� set of uncertain fuzzy parameters
˛i, ˇi premeditated confidence levels to the respective

constraints

Subscripts and superscripts
max upper bound for constraint on PDI
min lower bound for constraint on Mn

m̃ denoting the parameter m is uncertain

p
a
r
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e
t
i
e
p
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b
r
p
e
e

m̂ denoting a particular realization of uncertain
parameter m

ulverized NaOH is added in steps to the reaction mixture of AA0
nd EP dissolved in a solvent. It is established that alkali has a key
ole in epoxy polymerization and is added in semi-batch mode [4].
rogress in the study of modeling and optimization of industrial
poxy polymerization reactors is very rare in literature to the best of
he knowledge of the author. Batzer and Zahir [5] conducted exper-
ments on an isothermal epoxy batch reactor and provided data for
volution of concentration of oligomeric species with respect to
rocessing time. Raha and Gupta [6] carried out a modeling exer-
ise on similar isothermal epoxy batch reactor based on species

alance and equation of moment approach and presented a cor-
esponding validation of results on the same experimental data
rovided by Batzer and Zahir [5]. They estimated the kinetic param-
ters from available experimental data through an optimization
xercise. Raha et al. [7] extended this work to the semi-batch oper-
urnal 162 (2010) 322–330 323

ation of the epoxy reactor, where the effect of discrete addition
amounts of NaOH during the entire processing time is thoroughly
studied (AA0 and EP added in batch mode only). In this multi-
objective optimization work, simultaneous maximization of the
number average molecular weight (Mn) and minimization of the
polydispersity index (PDI) for a targeted product quality was stud-
ied. Initial low caustic addition followed by high additions in the
later stages led to high Mn and low PDI. Long processing time
is recommended to stabilize the product composition due to the
intermittent depletion of some unstable species. In a subsequent
work, Deb et al. [8] identified different addition patterns for all
three ingredients (NaOH, EP and AA0) in a semi-batch epoxy reac-
tor for a very broad range of lower to higher molecular weight
polymer molecules while achieving maximization of Mn, minimiza-
tion of PDI and minimization of processing time, simultaneously.
Though this study shows how basic theory of multiobjective opti-
mization can be implemented in a complex (non convex) problem
in a generic way and some salient operating principles of optimal
epoxy operation can be unveiled through multiobjective optimiza-
tion study, this study largely undermines some relevant process
issues. Mitra et al. [9,10] modified the earlier study of Deb et
al. [8] with more practical optimization objectives, and relevant
constraints in two subsequent studies where the maximization
of selective species were discussed and constraints that help an
optimization exercise to remain close to available experimental
conditions (Batzer and Zahir [5]) to avoid any kind of extrapola-
tion errors were incorporated. As compared to maximizing Mn and
minimizing PDI (reflecting average properties), maximizing growth
of desired species along with the formation of its lower oligomers
found to be a better objective set in the study of Mitra et al. [9]
where a three-objective optimization, minimizing the total NaOH
additions being the third objective, is carried out with a hope of
having a better control over the evolution of some desired species.
It also became clear that the semi-batch mode of operations is supe-
rior to the batch mode for all practical purposes. In the other work of
Mitra et al. [10], focus has been given to extract the optimal addition
histories of the reactants for having a polymer with the maximum
Mn processed in minimum processing time with the polydispersity
index within a given range. Both the approaches, i.e. hourly addition
approach and equal interval strategy were tried, but frequent addi-
tions arising from the latter approach might face limiting conditions
from mass and heat transfer aspects. Subsequently, Majumdar et al.
[11] considered few more relevant objectives such as minimization
of possible by-products, minimization of the overall product stabi-
lization time, etc., in addition to minimization of total amount of
NaOH addition, maximization of desired species concentration and
its lower chain propagation and found out the Pareto solutions and
their corresponding ingredient addition patterns for running the
epoxy reactor optimally.

Most of the multiobjective optimal control studies cited above
are based on the assumption that the kinetic model parameters
of the system under consideration are known with complete cer-
tainty. These kinetic parameters are estimated by an optimization
exercise where these parameters are varied within permissible
bounds to minimize the square of the error between the exper-
imental data and model predictions for some model attributes
(oligomeric species concentration in this case). As these param-
eters are tuned with process data and subjected to experimental
and regression errors, some levels of uncertainty are embedded in
them. Hence, handling them as constant parameters and thereby
neglecting the uncertainty associated with them is not realistic.

These problems are handled formally in the paradigm of optimiza-
tion under uncertainty where uncertainty propagation of these
parameters through model equations is reflected in terms of sys-
tem constraints and objectives that facilitate a designer to unveil
the tradeoff between solution optimality and robustness [12–15].
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tochastic programming, chance constrained programming and
uzzy mathematical programming [12] are different methodolo-
ies for handling optimization problems under uncertainty based
n the pioneering work of Beale [16], Bellman [17], Bellman and
adeh [18], Charnes and Cooper [19] and Dantzig [20].

In stochastic programming, several scenarios of realizations of
ncertain parameter are assumed and propagation of the effect of
arameter uncertainty is attained through expectation calculation
f objective functions and constraints over all those premeditated
ealizations of uncertain parameters [21]. Here the assumption is
hat the probability distributions governing the uncertain param-
ters are either known or can be estimated from the exiting data.
pplications of this approach in handling uncertainty in process
ystem engineering literature are found in large numbers [22–31].
xponential increase in problem size with the increase in the
umber of uncertain parameters is one of the drawbacks of this
pproach. Chance constrained programming [19,32–34] requires
easibility of solutions with at least some probability specified on
onstraints having uncertain parameters, expressed in terms of
eliability of the solution as opposed to stochastic programming
hat requires decisions have to be feasible for all the outcomes of
ncertain parameters. The main advantage of chance constrained
rogramming technique lies in the ability to control the size of the
eterministic equivalent problem even if the number of uncertain
arameters is large. Applications of CCP in process system engi-
eering literature are few in number [35–38]. On the other hand,

uzzy mathematical programming, proliferated by Zimmermann
39], neither assumes that the uncertain parameters have to follow
ny statistical distribution nor allows the final deterministic equiv-
lent formulation of the uncertain model to blow up in size with
ncrease in number of uncertain parameters. Here, a mathemati-
al model is formulated taking into account the decision maker’s
xpectations of a target range of the objective values and soft con-
traints while making decisions in a fuzzy environment. In this
pproach, the degree of satisfaction of a constraint is defined in
erms of a membership function of the constraint and a small extent
f constraint violation is allowed. Application of FMP is widely
pread across different applications such as capacity planning [40]
upply chain planning [41], production scheduling [42], bio-energy
roduction [43], etc., to name a few.

In this paper, we consider the more realistic scenarios of han-
ling uncertainty in model parameters that are otherwise assumed
onstant during the entire course of optimization such as kinetic
arameters and explore the merits of fuzzy chance constrained
rogramming towards analyzing their impact on the overall opti-
ization of the epoxy polymer processing system. Multiobjective

ptimization of the epoxy polymerization system is carried out
ith an aim of productivity maximization and evolution of desired

pecies under kinetic parameter uncertainty and the results are
nalyzed in Pareto sense. This needs treatment of uncertainty prop-
gation in constraints as well as one of the objectives that is tackled
ere using a fuzzy simulation based chance constrained program-
ing approach. To the best of the knowledge of the author, such

nalysis has not been considered in earlier work of polymer litera-
ure. The techniques for handling optimization under uncertainty
or nonlinear systems are rare though their counterparts for lin-
ar models are available in literature. It is, therefore, no exception
hat these techniques are not applied to polymer systems ear-
ier since polymer models are extremely nonlinear in nature. The
eterministic multiobjective epoxy polymerization of Majumdar
t al. [11] forms the basis of this work on which various impacts

f uncertainty have been analyzed. Real coded nondominated
orting genetic algorithm, NSGA II, a popular elitist evolutionary
ultiobjective optimization approach, is used for solving the mul-

iobjective optimization under uncertainty. The rest of the paper is
rganized as follows: first, a brief overview of the process model
urnal 162 (2010) 322–330

is described. In subsequent subsections, optimization formulation
under uncertainty followed by a note on possibility calculation is
provided. Results of epoxy polymerization system under uncer-
tainty are presented in Section 3 in detail. Finally the work is
summarized and concluding remarks are provided.

2. Model and problem formulation

2.1. Model

The kinetic scheme considered for the epoxy polymerization
system is taken from the work of Raha and co-workers [6,7]. They
have used this scheme to build their kinetic model and validate with
experimental data of oligomeric species provided by Batzer and
Zahir [4]. Ordinary differential equations (ODEs) are derived for var-
ious species using species balance and method of moment approach
[6]. These set of ODEs are integrated using explicit Runge–Kutta
(RK) type numerical routines and kinetic parameters assumed in
the scheme are estimated with the help of error minimization kind
of optimization exercise. There are 48 state variables that are used
to describe various system “states” (x =[x1, x2, . . ., x48]T) including
all species balance and moment balance equations as follows:

dxi

dt
= fi(x, U); i = 1, 2, . . . , 48 (1)

where x and U (=[U1(t), U2(t), U3(t)]T) are the vectors of the
state and manipulated variables (intermediate addition amounts
of NaOH [U1(t)], EP [U2(t)] and AA0 [U3(t)] at different times),
respectively. Details on the various molecular species including
the monomer considered for the modeling exercise can be found
in the published article of Raha et al. [7]. Given discrete addition
amounts at different times for three ingredients (U at time zero
and other time steps) and initial values of all state variables (x at
time zero), the reaction scheme model can be integrated to a pre-
specified polymer processing time (tsim). This simulation package is
combined with real coded nondominated sorting genetic algorithm
(NSGA II) [44,45] to perform stochastic multiobjective optimization
exercises (defined in next few sections). Though the multiobjec-
tive optimization problem described in this work could have been
solved by many other methods mentioned available in the liter-
ature [46], the rationale behind choosing NSGA II for this study is
based on its excellent performance on various studies conducted by
the research group of the author in the past [46]. Details on NSGA II
are omitted here for the sake of conciseness and inquisitive readers
can refer literature [45] for that.

2.2. Multiobjective optimization under uncertainty

The deterministic multiobjective optimization problem consid-
ered here is taken from the first case study of Majumdar et al.
[11]. Details on this formulation are not repeated here for the sake
of brevity and can be found in the work of Majumdar et al. [11].
There are five kinetic parameters (k1, k2, k3, k4 and k5) correspond-
ing to the assumed polymerization reaction. These parameters are
treated as constants in the deterministic formulation. As they are
subjected to uncertainty, the optimization under uncertainty for-
mulation takes their effect into consideration. These parameters
are assumed uncertain because most of them are obtained from
the regression of experimental data and thus are subject to uncer-
tainty due to regression and experimental errors. Considering that
the probability distributions of these uncertain parameters are

often not easy to obtain and, therefore, not available, we assume
these uncertain parameters as fuzzy numbers and intend to treat
the optimization under uncertainty using a combined approach
of fuzzy mathematical programming and chance constrained pro-
gramming [47–49]. The deterministic multiobjective optimization
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Table 1
Pseudo-code for possibility calculation of a constraint with a premeditated confi-
dence level ˇ4, e.g. Pos(P̃DI(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ 1.61) ≥ ˇ4.

Step Procedure

1 Assume Pos = 0
2 From the ˇ4 cut set of the fuzzy parameters

(k̃1, k̃2, k̃3, k̃4, k̃5), generate a particular realization
(denoted as

�
k1,

�
k2,

�
k3,

�
k4,

�
k5) uniformly

3 Compute the PDI (
�
PDI) through model simulation for

the particular realization (
�
k1,

�
k2,

�
k3,

�
k4,

�
k5) of

uncertain parameters
4 Calculate

� = min{�k1
(

�
k1), �k2

(
�
k2), �k3

(
�
k3), �k4

(
�
k4), �k5

(
�
k5)},

the membership function, if
�
PDI ≤ 1.61

5 Update Pos = �, if � > Pos
6 Repeat steps 2–5 for premeditated number of

simulation runs (say, N)
7 Stop simulation if the premeditated number of

simulation runs is reached and return Pos

Remark: If the ˇ4 level set of the fuzzy vector is difficult to determine, it is suggested
[47,48] to sample a vector (

�
k1,

�
k2,

�
k3,

�
k4,

�
k5) from the hypercube containing the ˇ4

level set and accept or reject it based on �(
�
k1,

�
k2,

�
k3,

�
k4,

�
k5) ≥ ˇ4 or not. In order

to speed up the simulation process, the hypercube should be designed as small as
possible.

Table 2
Pseudo-code for possibility calculation of an objective with a premeditated confi-
dence level ˇ2, e.g. Pos(t̃sim(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ t̄sim) ≥ ˇ2.

Step Procedure

1 Assume t̄sim = ∞ (in our case this is virtually a large
value)

2 From the ˇ2 cut set of the fuzzy parameters
(k̃1, k̃2, k̃3, k̃4, k̃5), generate a particular realization
(denoted as

�
k1,

�
k2,

�
k3,

�
k4,

�
k5) uniformly

3 Select the processing time (
�
tsim) by optimization

routine for the particular realization (
�
k1,

�
k2,

�
k3,

�
k4,

�
k5)

of uncertain parameters
4 Update t̄sim = �

tsim, if
�
tsim < t̄sim
K. Mitra / Chemical Enginee

roblem [11] can now be converted into the equivalent stochastic
ultiobjective optimization formulation under the fuzzy chance

onstrained programming paradigm as follows:
Objectives

max
ui,tsim

�̄1

min
ui,tsim

tsim

min
ui,tsim

�̄2

Subject to constraints

Pos(�̃1(k̃1, k̃2, k̃3, k̃4, k̃5) ≥ �̄1) ≥ ˇ1

Pos(t̃sim(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ t̄sim) ≥ ˇ2

Pos(�̃2(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ �̄2) ≥ ˇ3

Pos(P̃DI(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ PDImax) ≥ ˇ4

Pos(M̃n(k̃1, k̃2, k̃3, k̃4, k̃5) ≥ Mmin
n ) ≥ ˇ5

Pos

((
[ẼP](k̃1, k̃2, k̃3, k̃4, k̃5)

[ÑaOH](k̃1, k̃2, k̃3, k̃4, k̃5)

)
t

≥ 3.0

)
≥ ˇ6

�̃1 = �̃EE
0 (k̃1, k̃2, k̃3, k̃4, k̃5)∑

j

�̃j
0(k̃1, k̃2, k̃3, k̃4, k̃5)

�̃2 = �̃EE
1 (k̃1, k̃2, k̃3, k̃4, k̃5)

�̃EE
0 (k̃1, k̃2, k̃3, k̃4, k̃5)

ll model equations [6,7]

i = 1, ..., 21
j = AA, AB, AE, AF, BB, BE, BF, EE, EF, FF

onstraints for manipulated variables

7∑
i=1

ui ≤ 1.0 (for NaOH)

14∑
i=8

ui ≤ 3.0 (for EP)

21∑
i=15

ui ≤ 1.0 (for AA0)

anipulated variable bounds

0.1 ≤ u1 ≤ 1.0; 0.0 ≤ ui ≤ 1.0 (i = 2, 3, ..., 7)
0.1 ≤ u8 ≤ 2.0; 0.0 ≤ ui ≤ 2.0 (i = 9, 10, ..., 14)
0.1 ≤ u15 ≤ 1.0; 0.0 ≤ ui ≤ 1.0 (i = 16, 17, ..., 21)

(2)

onstraints and all the objectives affected by these uncertain
arameters are expressed in terms of possibility of getting sat-

sfied with a premeditated level of ˇi. Three auxiliary variables
�̄1, t̄sim, �̄2) are introduced here to handle three fuzzy objectives
hat have uncertain parameters. The above formulation is not easily
olvable due to the presence of uncertain parameters, probability
nd possibility measures. Hence, the deterministic equivalent of
he same has to be defined. It is known that the results for obtain-
ng the deterministic equivalent for only some specific linear cases

re available [47,48] and the same for complicated nonlinear cases
re usually hard to achieve. Liu and Iwamura [47,48] suggested the
oncept of fuzzy simulation for calculating probability of satisfying
onstraints for nonlinear cases. This will be described in the next
ection.
5 Repeat steps 2–4 for premeditated number of
simulation runs (say, N)

6 Stop simulation if the premeditated number of
simulation runs is reached and return t̄sim

2.3. Possibility calculation

Two scenarios are going to be discussed here that will be used
for the calculation of possibilities of constraints and objectives in
fuzzy simulation:

(i) Calculation of possibility of a constraint with a premeditated
confidence level ˇ4, e.g. Pos(P̃DI(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ PDImax) ≥
ˇ4 (see Table 1 for detailed flow of calculation).

(ii) Calculation of possibility of an objective with a premeditated
confidence level ˇ2, e.g. Pos(t̃sim(k̃1, k̃2, k̃3, k̃4, k̃5) ≤ t̄sim) ≥ ˇ2
(see Table 2 for detailed flow of calculation).

Diwekar and Kalagnanam [50] have proposed a new quasi-random
sampling technique, namely Hammersley sequence sampling (HSS)
that has been shown to exhibit better homogeneity property over
the multivariate parameter space, is used here. Further, the rapid
convergence property of HSS over its other counterparts (Monte
Carlo sampling or Latin hypercube sampling) suggests that rela-
tively precise estimates of possibility calculation can be achieved
by taking a relatively smaller sample size.
2.4. NSGA II parameter settings

Each solution is represented as a real-valued vector of 22 manip-
ulated variables (7 addition amounts for each of three NaOH, EP,
AA0 and a single value of tsim) in NSGA II. Using these values, the
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onstraints and objectives are calculated by means of fuzzy simu-
ation of epoxy polymerization model. SBX, the simulated binary
rossover and the polynomial mutation operators [44] are used
s genetic operators to create new solutions. Elitist nondominated
orting is used to identify different Pareto fronts in the merged
opulation of parents and children. The variable bounds are not
llowed to be violated due to the adaptation of two strategies on
SGA II, e.g. (i) solutions are initially created within the specified

ower and upper bounds, and (ii) if the new solutions go out of these
ounds, they are forced to be on the corresponding bounds. Con-
traints are handled by constrained tournament selection operator
44]. In this, two of the candidate solutions are randomly picked
nd compared. These solutions can be either feasible or infeasible.
f both of them are infeasible, one with lesser constraint violation is
elected. For both of them being feasible, either the one with better
on-constraint-dominated set wins if they belong to different non-
onstraint-dominated sets or the one that resides in less crowded
rea wins if they belong to the same non-constraint-dominated
et. A feasible solution of course wins over an infeasible solution
hen compared. Different schemes of Pareto ranking and density

stimator [45] along with this selection operation create a selec-
ion pressure for the algorithm to converge as close to the true PO
olutions as possible and maintain as diverse a population as pos-
ible [44]. When a premeditated maximum iteration count (Nmax)
s reached, NSGA II is terminated and the nondominated solutions
f the final population are declared as the obtained PO solutions.
alues for different parameters used in NSGA II for this study are:
max = 150; a population size of Npop = 100; crossover and muta-

ion probabilities of pc = 0.9 and pm = 0.01; distribution index for
BX operator = 0.01; distribution index for the polynomial muta-
ion operator = 0.01; sampling size in fuzzy simulation = 500. Each
ptimization procedure is initiated with 10 different initial popu-
ations to build a confidence on the obtained optimized solutions.
tarting with initial population that are randomly generated in the
iven search field, NSGA II converges to the final PO solutions at
round 100–120 generations and able to maintain the solutions till
he Nmax number of generations.

. Results and discussion

The physics based model used here is tuned with the data pro-
ided by Batzer and Zahir [5] which can be found from our earlier
ork [11] and not presented here for the sake of conciseness. One of

he aims to analyze the multiobjective optimization problem under
ncertainty considered here is to show the effect of uncertainty

nvolved in the kinetic parameters on the Pareto optimal (PO) front.
he three dimensional PO front for the optimization under uncer-
ainty formulation given in Eq. (2) is presented in Fig. 1. The three
bjectives considered here do not have a straight forward relation-
hip among them. For example, the ratio of EEn and sum of the
ther species concentration (i.e. objective 1) has a tradeoff with
rocessing time (objective 2) because higher value of objective 1

s possible with higher value of processing time and we wish to
aximize the first objective and minimize the second objective.

imilarly, objective 1 and objective 3 have tradeoff relationship
ecause we wish to maximize the objective 1 and minimize the
bjective 3 simultaneously whereas higher value of objective 1 is
easible with higher value of objective 3. On the other hand, pro-
essing time has a favorable relationship with the objective of chain
ropagation (objective 3) as low chain propagation values are avail-

ble with lower processing time and we want to minimize both of
hem simultaneously. Considering all three objectives together, we
an see the aforementioned tradeoff again as shown in Fig. 1.

While considering the uncertainty problem, all data are kept
ame as the deterministic multiobjective optimization first case
Fig. 1. Multiobjective Pareto optimal solutions for different levels of uncertainty.

study [11] except the uncertain parameters. Often, the information
on any distribution on these kinetic parameters is not available. We,
therefore, assume these uncertain parameters as fuzzy parameters
and represent their uncertain behavior in terms of triangular fuzzy
membership functions. Tip of the triangle (middle point) being
lying at the same value of the deterministic case and an allowance
of 90% is provided on both sides of the triangular membership
function. The effect of parameter uncertainty on the PO fronts is
shown in Fig. 1. Due to the complicated tradeoff among various
objectives as mentioned above, we intend to analyze the effect
of uncertain parameters on PO fronts on three two-dimensional
planes (planes of objectives 1–2, objectives 2–3 and objectives 1–3,
respectively). Concentrating on the objective 1–3 plane (plane of
“EEn Conc/Others Conc” vs. “Chain Propagation”), we can clearly
identify the tradeoff between solution optimality and robustness.
Probability of a constraint getting satisfied in chance constrained
programming which is treated in the form of possibility in fuzzy
chance constrained programming is a measure of reliability or
robustness of the obtained solution [35,37]. The PO fronts become
better as we move in the order “certain” → “possibility 0.9” → “pos-
sibility 0.7”. However, the solution becomes less and less reliable
gradually in this direction. This means that the solution reliability
deteriorates in the direction of better PO fronts. However, we aim
to have better PO fronts with maximum solution reliability. Here
lies the tradeoff. Appearance of this reliability adds another dimen-
sion to the three dimensional Pareto plot in Fig. 1. We can further
infer from this that as the possibility value increases, many of the
solutions that were feasible for lower values of possibility become
infeasible and search space for optimization shrinks leading to rel-
atively inferior PO fronts.

Another standard practice in industry is to replace the uncer-
tain parameters with their nominal values to handle situation
under uncertainty when the distribution information for uncertain
parameters is available. Qualitatively, we see the similar situation
for the triangular fuzzy membership function as we see for nor-
mal distribution where the distribution is more concentrated near
the nominal value and the intensity reduces gradually on either
sides of it. In these cases, if we assume the nominal value to coin-
cide with the tip of triangular fuzzy membership function, which is
true in our case, we can say that the process run using the nominal
values of the uncertain parameters could have missed to materi-

alize the full opportunity of the problem because it is shown here
that by relaxing the uncertain parameters from their crisp values
used in deterministic optimization, better PO front can be achieved
in the objective 1–3 plane. This has been shown also in some of
the other work by the group of the author [37,41]. Fig. 1 further
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ig. 2. Temporal growth of various species for a PO solution taken from the PO set
iven in Fig. 1.

hows how optimization in the presence of parameter uncertainty
resents significantly different results in terms of PO fronts. Simi-

ar tradeoff among other objectives and reliability in the objective

–3 plane is also visible. Here also we can see that the nature of PO
oints gets better with reduction in possibility value. However, this
spect is visible in the objective 1–2 plane to some extent (compare
he cases “certain” and “Possibility 0.9”), while distinction between
he cases “Possibility 0.9” and “Possibility 0.7” are not as clear as it is

ig. 3. (a) Similarity of U1(t) profiles, i.e. NaOH addition amounts u1, u2, . . ., u7 among PO
.e. EP addition amounts u8, u9, . . ., u14 among PO solutions presented in Fig. 1 for possib
. ., u21 among PO solutions presented in Fig. 1 for possibility level 0.9.
urnal 162 (2010) 322–330 327

in case of other two two-dimensional aforementioned planes. Since
objective 2, objective 3 and reliability show a tradeoff among them,
we can see the tradeoff among all four objectives (maximization of
reliability can be a fourth objective), in Fig. 1. However, it is rela-
tively easy to comprehend the situation when the objective space is
confined to two dimensions as it is shown in another case study of
industrial grinding [49]. From the PO solutions in Fig. 1, it is visible
that better solutions can be achieved by sacrificing some amount of
reliability in obtained solutions. Comparing the “Certain” case and
the case of “Possibility 0.7” in Fig. 1, we investigate the extent of
improvement in each of these objectives keeping one of the objec-
tives fixed. If we keep the processing time fixed (at a value of 5 h),
there is a scope of 32% improvement possible in the objective 1
and around 19% improvement in the objective 3. Similarly, keep-
ing the objective 1 fixed (∼1.5), around 3% and 20% improvement
can be experienced in processing time and objective 3, respectively.
These improvements are possible at the cost of some reliability of
the obtained solutions. As we move from the “certain” case to the
case of “Possibility 0.7”, we lessen the control over the uncertain
constraints to the extent of the expressed possibility value whereas
for the “certain” case, we do not allow the constraint to be violated
at all. We, therefore, can realize that this kind of study on uncer-
tain parameters shows the effect of being less stringent in terms

of constraint satisfaction on objectives and clearly demonstrates
the corresponding improvement in solution optimality at the cost
of solution reliability. One of the PO solutions from Fig. 1 for the
possibility value 0.9 is presented in the form of species distribution
in Fig. 2 which shows how with the present formulation, species

solutions presented in Fig. 1 for possibility level 0.9; (b) similarity of U2(t) profiles,
ility level 0.9 and (c) similarity of U3(t) profiles, i.e. AA0 addition amounts u15, u16,
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oncentration of EEn can grow with concentration of other species
educing down towards the end of the polymer processing time
hich was the objective for this study. Though a single solution

s required to implement in real life problems, a large number of
lternatives is provided for an operator by this study and the final
election of the solution is purely based on the requirement of the
perator, i.e. the operator can give relatively more or less impor-
ance to different objectives and converge to a solution based on
he requirement.

Next we investigate whether similarity exists among profiles
f manipulated variables for PO points within same possibility
alue, i.e. whether U1(t), U2(t), U3(t) of different PO points of pos-
ibility 0.9 have some similarities in nature. Similar thing can be
nvestigated for PO points of possibility 0.7 as well. The Fritz–John
ecessary conditions for Pareto optimal solutions [44,51] indicat-

ng that there exist a number of mathematical conditions which
very Pareto optimal solution must satisfy lead to believe if the
btained solutions are close to the PO solutions will share some
imilarities among them [52,53]. For PO points corresponding to
ossibility 0.9 in Fig. 1, we can plot U1(t), U2(t) and U3(t) where y-
xis is the amount of addition for respective ingredients and x-axis
s the seven ingredient added at different equidistant time points
e.g. U1(t) plot consists seven different manipulated variables of u1,

2, . . ., u7 in x-axis with their values in y-axis). Fig. 3(a)–(c) shows
he profiles for NaOH, EP and AA0, respectively. These ingredient
ddition amounts, though discrete in nature, are added with lines
o show the trends among them. From the trends, it is evident that
A0 along with NaOH is very critical to initiate the reaction pro-
solutions presented in Fig. 1 for possibility level 0.7; (b) similarity of U2(t) profiles,
ility level 0.7 and (c) similarity of U3(t) profiles, i.e. AA0 addition amounts u15, u16,

cess followed by the presence of EP and NaOH that form unstable
species which further depletes with time to form the desired poly-
mer species. More amount of EP ensures epoxy groups present in
both ends leading to EEn formation. Fig. 4(a)–(c) shows the sim-
ilar curve for possibility value 0.7. Comparing the corresponding
trends with the same of possibility value 0.9, one can say that in
this case, starting amount of NaOH addition is relatively less which
is followed by more additions in the subsequent steps. Trends
for EP are different in terms of more frequent addition of rela-
tively less amount. Trends for AA0 are quite same except in case
of possibility 0.7, the amounts of additions are less. The corre-
sponding control variable (Mn, PDI) values with processing time
as third dimension are shown in Fig. 5 for the case of deterministic
as well as possibility values of 0.9 and 0.7. Given a set of objec-
tives, certain trends emerge from the system can be termed as
the “blue print” of the system because this information directly
talks about what should be the set points of the concerned manip-
ulated variables to drive the system towards optimality. Further,
these similarities corroborate the Fritz John criteria mentioned ear-
lier. Such observation has also been observed in other engineering
design problems such as gearbox design, truss-structure design,
etc. [52], and in other chemical process optimization problems,
such as in deterministic multiobjective optimization of various

processes like epoxy polymerization [8,11], industrial grinding
[53], iron ore sintering process [54], continuous casting process
[55], Poly-propylene terephthalate (PPT) polymerization [56], iron
ore induration [57]. Various rules of these types can be used as
innovative and intelligent thumb rules and practiced by process
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ig. 5. Values of Mn and PDI for Pareto optimal solutions presented in Fig. 1 for
ifferent levels of possibility values.

ngineers to improve the operation of epoxy polymerization sys-
em.

This kind of study on optimization under uncertainty can be
mmensely beneficial for a process under operation. One of the dif-
erences between stochastic and deterministic optimization is the
bility to address the trade off between solution quality (optimal-
ty) and reliability in case of stochastic optimization. Better optimal
olution can be achieved by sacrificing the reliability attached with
he solution. Once this tradeoff is obtained, there could be various
O fronts based on the different reliability levels. Next, the higher
evel information has to be provided to determine the exact extent
f reliability that the enterprise can assume based on its existing
isk apatite. Fixing this reliability level means a particular PO front
as been fixed for an operator. Now, based on the similar figures
resented in Figs. 3 and 4 corresponding to fixed reliability level,
he operator knows how to run the reactor towards achieving the
ptimal performance. Figs. 3 and 4 are nothing but the operators’
rinciple to run the plant optimally or near optimally and they are
rrived at by the multiobjective methodology mentioned above.

. Conclusion

Multiobjective optimization of an epoxy polymerization sys-
em under kinetic parameter uncertainties is studied in this work.

aximization of a selective species in the presence of other unde-
ired species, in a species balance based kinetic model, is achieved
long with simultaneous consideration of minimization of process-
ng time and minimization of chain propagation. An uncertainty
ramework amalgamating the concept of chance constrained pro-
ramming and fuzzy mathematical programming is proposed that
akes use of the deterministic multiobjective optimization model

f Majumdar et al. [11] and results are analyzed in Pareto fashion
n the backdrop of the deterministic formulation. The systematic
tudy of the uncertainty analysis for parameters that are otherwise
ssumed constant during the course of optimization has not only
hown the scope of improvement as compared to the deterministic
ptimization problem, but also demonstrates the tradeoff between
he solution optimality and reliability.
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